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Abstract

The underground-mining environment can affect radio-signal propagation in various ways. 

Understanding these effects is especially critical in evaluating communications systems used 

during normal mining operations and during mine emergencies. One of these types of 

communications systems relies on medium-frequency (MF) radio frequencies. This paper presents 

the simulation and measurement results of recent National Institute for Occupational Safety and 

Health (NIOSH) research aimed at investigating MF coupling between a transmission line (TL) 
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and a loop antenna in an underground coal mine. Two different types of measurements were 

completed: 1) line-current distribution and 2) line-to-antenna coupling. Measurements were taken 

underground in an experimental coal mine and on a specially designed surface test area. The 

results of these tests are characterized by current along a TL and voltage induced in the loop from 

a line. This paper concludes with a discussion of issues for MF TLs. These include 

electromagnetic fields at the ends of the TL, connection of the ends of the TL, the effect of other 

conductors underground, and the proximity of coal or earth. These results could help operators by 

providing examples of these challenges that may be experienced underground and a method by 

which to measure voltage induced by a line.

Index Terms

Medium-frequency (MF) communications; parasitic coupling; transmission line (TL)

I. Introduction

The Mine Improvement and New Emergency Response Act of 2006 (MINER Act) [1] 

mandated that every underground coal mine in the United States develops an emergency 

response plan within 3 years that includes two-way, postaccident, wireless communication 

and tracking. The plan must provide for communications between underground and surface 

personnel, and electronic tracking of all underground mine workers. A survey completed in 

2014 showed that all active underground coal mines have installed a system that operates in 

the very-high-frequency (VHF) or ultrahigh-frequency (UHF) bands [2].

Communication between rescuers at the surface and miners underground is especially 

important during emergencies such as methane or coal dust explosions, belt fires, or 

entrapments from a large ground fall or pillar burst. In such circumstances, conventional 

communication systems might be interrupted because their infrastructure may be damaged. 

Communication signals are subsequently blocked by the surrounding strata, attenuate on 

existing conductors once they are damaged, or power is lost. One of the major benefits of 

medium-frequency (MF) signals is that they couple to any existing mine conductors and 

travel for considerable distances underground without the need for additional power 

provided along the way.

MF communications typically involve inducing an electromagnetic field in close proximity 

to metallic conductors. The MF wave is then carried along those conductors where it can be 

received by another MF radio. The major advantage of MF technology is that it can couple 

into many different types of conductors and travel, in some cases, for several kilometers. 

Possible conductors include single- and multiple-wire insulated cables, power cables, rails, 

support mesh, and other continuous conductors present in a mining environment [3].

Since 2006, there are currently four approved MF systems. These four include peripherals, 

and all four are developed and marketed by the same manufacturer with the capability to 

function as MINER Act compliant communications and tracking systems [4].
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II. MF Communications

Medium frequency is designated for the band 300 kHz to 3 MHz, with wavelengths up to 1 

km long. This band also includes the AM radio band. Permissible MF systems currently 

only support a single channel for voice, text, or data. This limitation may force permissible 

MF systems into the role of an emergency system for a larger mine which may require more 

channels or data for daily operations. However, MF does have its advantages; it may not 

require any additional specific conductors.

On the surface, MINER Act compliant MF radios cannot communicate farther than 30 m 

apart from each other through air in some cases. The power used by these MF radios has to 

meet permissible power levels for U.S. underground coal mines. Nonetheless, it has been 

observed that permissible MF signals can travel over 8 km underground aided by a 

conductor, acting as part of a transmission line (TL). For MF systems, the conductor plays a 

substantial role in the performance of this system.

The simplest underground MF communication system consists of only two MF transceivers 

separated by some distance and a single-conductor TL with return through ground (the 

earth). An electromagnetic field generated by one transceiver can couple to a conductor and 

then can be received by another transceiver within range of that same conductor (Fig. 1). 

Currents excited on a wire from an incident electromagnetic wave to a wire have been of 

interest to the research community for several decades [5]. One method calculates the 

induced currents by integrating over the product of the tangential electric field and the 

Green’s function. This method has been applied to multiconductor systems [6] as well as 

systems including a dissipative medium [7], [8]. Furthermore, when transmission-line 

equations can be used approximately, a simplified coupling model can be developed [9]–[11] 

based on the telegrapher’s equation.

III. FEKO Line Simulation

There are several electromagnetic software simulation tools on the market. FEKO is an 

electromagnetic-simulation software tool for the analysis of 3-D structures. It offers multiple 

numerical methods for the solution of Maxwell’s equations, enabling users to solve 

electromagnetic problems encountered in various industries. In this study, this software was 

used to simulate measurement values for comparison.

A TL was created using FEKO to simulate two parameters:

1. line-current distribution (LCD);

2. line-to-antenna coupling.

A. LCD Simulation

A FEKO model was created to simulate LCD, or more plainly described as the current along 

the TL from the beginning to the end. LCD is useful for simulation and modeling because it 

can be referenced when correlating measurements to models.
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Figs. 2 and 3 show plots of the current at a given location along a 300-m TL. The TL was 

composed of a single 1-mm-radius wire positioned 1.68 m above a lossy earth (σ = 1e − 2 S/
m, εr = 10). These values of earth properties were chosen as representative values found in 

testing. The TL was excited by a 1-W power source for six selected frequencies. Notice that 

the line-current-distribution plots contain shapes that show resonances in the line due to 

standing waves. For the open-circuit TL (Fig. 2), the current approaches zero at the remote 

end (a null at 300 m); for a shorted TL, there is a maximum in the current at the remote end 

(Fig. 3). The first resonance occurs for one-quarter wavelength equal to 300 m (for an open 

circuit). The next resonance would be for one-half wavelength equal to 300 m (for a short 

circuit).

B. Line-to-Antenna-Coupling Simulation

Using the same TL parameters from the LCD simulation, coupling was simulated by placing 

a 10-cm radius antenna loop constructed with a 1-mm-radius wire 3 m away, oriented in the 

plane parallel to the plane of the driven wire and the earth return. The antenna was translated 

along the length of the TL to simulate the coupling variation between the antenna and the TL 

along the length of the TL. When the far end of the TL was connected to ground, the 

simulation yielded Fig. 4.

In the case of a single wire with ground return TL, it is important to consider the termination 

effects of connecting the wire conductor to lossy earth. Earth is not a perfect conductor; 

there is a nonzero impedance associated with this electrode connection to ground. In reality, 

there are many factors that can affect the earth’s conductivity. Hence, for this work, the 

conductivity used in simulation models was based on experimental findings. For good-

conducting (i.e., σ/εω ≫ 1) earth materials, this impedance is mostly real and can be 

approximated with simple algebraic expressions [12], [13]. As a result, it is not possible to 

obtain a true short at the end of such a TL. The best that can be achieved is a close 

approximation to a short by providing Zr ≪ Z0, where Zr is the contact impedance between 

the wire and the lossy earth, and Z0 is the characteristic impedance of the TL.

Permissible MF systems operate around 500 kHz. 995 kHz is about half the wavelength of 

500 kHz. The coupling simulation produced a minimum in the received loop voltage about 

halfway along the length of the line for a 500-kHz signal and two minimums partway along 

the line for 995 kHz. The correspondence in the minimums in the LCD and antenna 

coupling plots suggests that current in the line plays a role in the received loop voltage, but 

since the loop takes into account the entire radiation of the line, the changes appear to be 

more gradual.

IV. Measurements

In order to validate the simulation results and characterize the TL for MF coupling, the same 

two types of measurements were taken: 1) LCD and 2) line-to-antenna-coupling 

measurements. Each type of measurement was obtained and compared to the simulation 

results.
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The ultimate goal is to make measurements underground. Rather than measuring an 

underground TL first, a surface TL was built in a remote area with no other conductors 

within 50 m. This surface TL served as a baseline reference for future measurements. The 

surface TL consisted of 14-gauge wire suspended 2 m off the ground using wooden-

insulated supports (Fig. 5). One wire was hung on top of another separated by about 15 cm. 

When earth was connected, eight 15-cm-long, 6.3-mm-diameter, stainless steel bolts were 

attached in parallel using 14-guage wire and stainless steel clips at each end of the TL. 

Ground connections or electrodes were measured to be less than 50-Ω resistance from 100 to 

1000 kHz at both ends of the TL using measurement methods outlined in previous work 

[14].

In addition to electrode grounding, noise can be a factor for TL measurements as well. A 

very long TL, acting as an antenna itself, can receive this interference. Because interference 

from other frequency sources is inevitable, frequencies were chosen to be in between AM 

radio stations, which are strong interferers on the surface. Frequencies were selected that 

were not first or second harmonics of each other, so measurements of multiple frequencies 

could be recorded almost simultaneously for LCD and for line-to-antenna coupling.

TL measurements were taken using two different configurations (Fig. 6). For the single-wire 

TL, ground was always used as the return path. For the two-wire TL, the second wire was 

used as a return path and the earth was not connected.

A. Surface-Line-Current-Distribution Measurements

LCD measurements were taken using a clamp-on current probe (model BCP-510 passive 

current probe from AH systems, Inc.) and a spectrum analyzer (model Spectrum Master 

MS2722C from Anritsu Corp.) at fixed intervals along the TL. For a two-wire TL with an 

open termination (Fig. 7), current starts to flow at the source but begins to fall off toward the 

end of the TL. The opposite is true for a two-wire TL with a shorted termination (Fig. 8). 

For a single-conductor TL using ground as a return, current begins to flow near the source 

but does not fall off as it approaches the 300-m mark (Fig. 9).

For these frequencies, there is agreement between the LCD simulation and the 

measurements. Consider 500 kHz for Figs. 3 and 9. The 500-kHz measurement begins at the 

source and about halfway down the length of the TL it experiences a minimum before 

returning back up to a value close to what it was near the source at the end of the TL. There 

is a very little difference in behavior between the current in the TL in the two-wire shorted 

case (Fig. 8) and the single-wire configuration with return through earth (Fig. 9). Another 

observation is the decrease in the current at specific locations along the TL for each 

frequency. These decreases are attributed to standing waves in the TL caused by the 

reflecting current at the far end of the TL. When comparing the measurements with the 

simulation results, it is also important to note that the simulation models assumed that the 

TL is uniform along its length, which may not be true for the section of earth used for 

transmission in the experiments. It has been noted that this difference can cause modal 

conversion in multiconductor systems [15], potentially leading to differences in simulation 

models and measurement data.
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B. Surface-Antenna-Coupling Measurements

Surface-antenna-coupling measurements were taken with a calibrated 30.5-cm receive loop 

(model SAS-563B 12″ active-shielded loop antenna from AH systems, Inc.) and the same 

model spectrum analyzer used for LCD measurements. The loop was positioned with its axis 

approximately 1.8 m high off the ground. The loop was oriented in the vertical plane parallel 

to the TL. Measurements were taken at 3 and 6 m away from the TL for its entire length 

(Fig. 10). The TL’s electromagnetic field induced a voltage in the loop which is proportional 

to the changing electromagnetic field flux experienced by the loop. The calibration chart of 

the receive loop allows the user to equate the measured voltage to the electromagnetic field 

strength at that frequency. The magnetic flux density B is related to the voltage V, using the 

equation as follows:

where

B magnetic field (magnetic flux density);

Σ surface bounded by a given closed contour;

dA infinitesimal vector element of surface Σ. If its direction is orthogonal to 

that surface patch, the magnitude is the area of an infinitesimal patch of 

surface.

The same TL test configurations used for LCD were also used for coupling measurements.

The two bottom plots in Fig. 10 are for a two-wire TL shorted at the end with the 30.5-cm 

receive antenna positioned 3 and 6 m away from the TL. The two top plots in Fig. 10 are the 

coupling results for a single-wire TL when ground was attached to both ends of the TL for 

the same positions. One observation was a 10–20 dBμV increase in received loop voltage 

when both ends of the TL were connected to ground. Another observation was a 5-dBμV 

drop observed at the ends of the TL whether ground was connected or not.

A slight increase and then a drop of about 5 dBμV at the end and beginning of the TL was 

observed for every frequency measured (Fig. 11). This also showed up in the simulation 

(Fig. 4) and may be attributed to the increased flux due to the vertical line connecting the 

return wire or ground as the loop approaches within 5–10 m from the vertical line. Within 5 

m, the vertical and horizontal field lines may not couple as well to the loop, thus producing a 

5-dBμV drop.

One representative example comparing simulated and measured coupling for two 

frequencies is shown in Fig. 12. The line-to-antenna-coupling simulation and measurements 

agree within about a 5-dB margin. There is a slight shift in the minimums for the measured 

values when compared to the simulation in Fig. 12. This is due to several factors. Other 

sources were present in the test area adding to our received signal, the ground plane was not 

completely flat, about 1 m of wire was used to connect the TL to our source as well as the 

termination, and finally, our resolution of 3 m is larger than the simulation.
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C. Underground-Antenna-Coupling Measurements

Coupling measurements were taken underground in a non-producing coal mine. This mine 

was a small drift mine that contained noise sources and conductors similar to active mines. 

The TL in this case was a 520-m, 16-gauge solid copper, twisted-pair page phone cable. This 

type of cable is found regularly in active coal mines and it was one long continuous cable 

with no interruptions in this case. The cable ran into the mine through the drift opening and 

followed the perimeter before ending in the back of the mine. The cable was hung using 

plastic cable ties along the rib at about 1.2 m off the ground. Other conductors ran alongside 

it at various points. These other conductors shared the same entry as the twisted-pair under 

test for portions of the 520-m distance. The cable was hung to create a separation distance 

between it and any large steel structures to prevent direct contact with the TL insulation that 

may affect MF coupling characteristics.

The receiving loop height was shortened to 1 m on the center to account for low-roof 

conditions (Fig. 13). The antenna was also positioned 1.5 m away from the TL in order to 

keep it close to the center of the entry. Any further distance might have exposed the antenna 

to increased coupling of conductors on the other side of the entry in certain locations.

Measurements underground were taken using the same configurations and instrumentation 

as the surface-antenna-coupling measurements. The twisted-pair was used as a TL in the 

first case, and, in the second case, the twisted-pair shorted at both ends and used as a single-

wire TL. For both configurations, the end of the TL (approximately the 500-m mark) was 

tested under both the short and open terminations. The source was positioned at the mouth 

of the drift and connected to the TL heading inby. When the source was connected to ground 

during the single-wire configuration, it was attached to eight 15-cm stainless steel bolts into 

the earth outside the mine. When the termination at the end of the TL was shorted to ground 

inside the mine, the end of the TL was attached to eight similar 15-cm stainless steel bolts 

into the coal rib. Results from tests conducted in this mine show that the impedance achieved 

from grounding eight bolts does not significantly change when adding more [14]. The results 

from the coupling measurements are shown in Fig. 14.

From beginning to end, the TL was nearby other energized conductors which continued 

through the mine. Although there is more interference as evidenced by the fluctuations seen 

in Fig. 14, there is still agreement with the surface results and simulations. There is still a 

large increase in the coupling of 10–20 dBμV in the single-wire configuration.

The sudden increase at the termination end of the underground TL may be attributed to other 

conductors being in the area of the termination. At the very end of the TL, the received 

coupling for every configuration seems to read nearly the same value regardless of the 

conductor’s termination. A further investigation on the influence of other conductors to the 

coupling is needed in order to quantify this effect. For a very long MF TL, it is very likely to 

come in close proximity to other underground conductors, which could produce unintended 

coupling.
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V. Discussion

Based on observations underground, it would appear in certain cases that keeping the TL 

away from other metal conductors underground may reduce coupling or TL propagation 

issues. Measurement equipment and modeling similar to what was used in this paper may 

help determine the source of these types of TL issues and provide general guidance on 

installation of a TL for MF communication use.

The measurements presented in the paper [16] can serve as a reference to help understand 

MF coupling characteristics, but only in the context of the described conditions. The 

measurement results are expected to vary with changing conditions. Among these conditions 

are current flowing on the conductor, length of the conductor, size of the antenna, orientation 

of the antenna, and termination of the TL conductors. However, these results serve as a 

representative example of simulation and measurement comparison.

VI. Conclusion

In this study, line coupling was found to correlate with LCD. The line-coupling simulation 

and measurements do not experience the sharper drops in signal due to resonance of the 

receiving antenna contribution over a length of line instead of a given point. For the case 

involving the two-wire open-ended TL, the current will go to zero at the termination. 

Therefore, the coupling will be poor at the end of the TL in this case.

Both in the TL measurements and in the simulation, it was observed that there is about a 5-

dB drop in the signal coupled to the directional MF antenna within about 5–10 m of the end 

of the TL. These TL end effects are due to the antenna nearing the end of the TL where 

initially the vertical line used to short the TL to a return wire or to ground increases the flux 

through the receive loop. When the receive loop moves closer to the end of the TL, there are 

no horizontal TL lines past the vertical line to produce flux so a decrease occurs.

One solution to either of these problems is to extend the TL beyond the beginning and end 

points of maximum transmission. This could also be accomplished by extending the TL 

beyond the maximum desired communication distance. In any case, moving the receiver 

away from the end of the TL and toward the center of the TL may resolve this issue.

Measurements in this study indicate that a single-wire TL configuration using ground as a 

return has a greater signal coupling than a two-wire TL (Figs. 10 and 14). This is likely due 

to the increased size of the area enclosed by a single-wire TL. The stray field from a two-

wire TL with the conductors close together is less than that from a single-wire TL spaced 

relatively far from the earth return; hence, it is easier for the loop to couple in the second 

case.
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Fig. 1. 
Simple MF communications system.
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Fig. 2. 
Simulation result of LCD for an open TL.
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Fig. 3. 
Simulation result of LCD for a shorted TL.
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Fig. 4. 
Coupling simulation of a single conductor connected to ground.

Damiano et al. Page 17

IEEE Trans Ind Appl. Author manuscript; available in PMC 2016 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Surface TL.
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Fig. 6. 
TL test configurations.
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Fig. 7. 
LCD—two-wire TL, open, no ground connected.
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Fig. 8. 
LCD—two-wire TL, no ground connected.
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Fig. 9. 
LCD—single-wire TL, connected to ground.
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Fig. 10. 
Surface antenna coupling—450 kHz, single-wire and two-wire TL, loop antenna at 3 and 6 

m away from the TL, all shorted.
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Fig. 11. 
Surface antenna coupling—single-wire TL, connected to ground.
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Fig. 12. 
Comparison of line-to-antenna-coupling measurement versus simulation.
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Fig. 13. 
Underground-transmission-line-coupling measurements.
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Fig. 14. 
Underground-coupling measurements at 450 kHz.
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